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SUMMARY

This paper presents the linear stability analysis of a round jet in a radially unbounded domain using a
spectral Petrov–Galerkin scheme coped with exponential coordinate transformation based on Fornberg’s
treatment. A Fourier–Chebyshev Petrov–Galerkin spectral method is described for the computation of the
linear stability equations based on half a Gauss–Lobatto mesh. Complex basis functions presented here are
exponentially mapped as Chebyshev functions, which satisfy the pole condition exactly at the origin, and
can be used to expand vector functions efficiently by using the solenoidal condition. The mathematical
formulation is presented in detail focusing on the solenoidal vector field used for the approximation of
the flow. The scheme provides spectral accuracy in the present cases and the numerical results are in
agreement with former works. Copyright q 2008 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Jets are important in many practical applications, e.g. related to combustion, propulsion, mixing
and aeroacoustics. As one of the generic flows of fluid mechanics, jets have been of scientific
interest for over a 100 years [1]. The round jet results when fluid is emitted, with a given initial
momentum, out of a circular orifice into a large space. At sufficiently high Reynolds number, this

∗Correspondence to: J. Z. Lin, China Jiliang University, Hangzhou 310018, China.
†E-mail: mecjzlin@zju.edu.cn

Contract/grant sponsor: National Natural Science Foundation of China; contract/grant numbers: 50806023, 10632070,
50721005

Copyright q 2008 John Wiley & Sons, Ltd.



AN EFFICIENT NUMERICAL SOLUTION FOR LINEAR STABILITY 781

jet will be turbulent. The stability properties of the flow play a fundamental role in the transition
to turbulence and the formation of coherent vortex structures in a turbulent fluid [2, 3].

Frequently, the choice of independent variables is motivated by the symmetry of the circular jet;
cylindrical coordinates are most appropriate. However, the choice of a particular set of independent
variables might inadvertently introduce mathematically allowable, but physically unrealistic terms,
e.g. singularities, which can decrease the accuracy or computational efficiency. Physically, the flow
is continuous and regular at the axis [4]. These non-physical terms must be eliminated by the
imposition of constraints on the mathematical solutions. The strategy to deal with this difficulty
in analytical approaches is commonly that of discarding the singular solutions among all the
admissible ones [5] (e.g. using Bessel’s functions of the first kind and discarding those of the
second kind [6]).

The treatment of the geometrical singularity in cylindrical and spherical coordinates has been
a difficulty in the development of accurate finite difference (FD) and pseudo-spectral schemes
for many years [7]. A variety of numerical procedures for dealing with the singularity have been
suggested. The use of a spectral representation is often to be preferred for the accurate solution of
problems with simple geometry [8–11]. In this case, the three-dimensional mathematical problem
is transformed into a number of coupled two-dimensional ones for the spectral harmonics on the
meridian plane. However, each of such problems is characterized by the singular terms whose
degree of singularity grows with the harmonics. This is reflected by the number of regularity and
boundary conditions that must be satisfied at the singular axis to allow a well-posed problem.
Lopez et al. [12] derived regularity conditions by using the properties at the axis of the functions
chosen to expand velocity and pressure along the radial direction, in which the radial and azimuthal
components of the velocity are replaced by two complex functions. Pole conditions for Poisson-
type equations in physical space were derived by Huang and Sloan [13]. Although they could solve
the Poisson-type problems successfully, the time-step restriction problem that arises for advection
problems due to the increased resolution near the coordinate singularity cannot be avoided. One
way to avoid the time-step restriction is to use a Fourier filter in the azimuthal direction as used by
Fornberg and Sloan [14] and Fornberg [15]. They used a Chebyshev expansion in the radial direction
on [−1,1] over the coordinate singularity instead of on [0,1]. Their method avoids the time-step
restriction problem and gives a good result for a simple linear advection problem. The merits of
Fornberg’s treatment in cylindrical geometries can also be found in the recent literature [16–19].
Priymak and Miyazakiy [20, 21] presented a robust numerical technique for the incompressible
Navier–Stokes equations in cylindrical coordinates; the numerical solution is obtained using a
spectral Galerkin method. Lopez and Shen [22] presented an efficient and accurate numerical
scheme for the axisymmetric Navier–Stokes equations in primitive variables in a cylinder. The
scheme is based on a new spectral Galerkin approximation for the space variables and a second-
order projection scheme for the time variable. A sensible comparison is made with a standard
second-order FD scheme based on a streamfunction-vorticity formulation. The numerical results
indicated that both schemes produce very reliable results despite the singular boundary condition.
The spectral projection scheme is still more accurate and more efficient than the FD scheme.
More importantly, the spectral projection scheme can be readily extended to three dimensional,
non-axisymmetric cases. Based on this method, Meseguer and Trefethen [23] described a Fourier–
Chebyshev, Petrov–Galerkin spectral method for high accuracy computation of linearized flow in
a finite circular pipe.

This paper considers the hydrodynamic stability of round jet flow in which there are no solid
boundaries in the field. To construct a basis function set for unbounded domains, it is necessary to
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assume that the asymptotic behavior of the approximated functions for large r , as the approximated
functions decay exponentially as r tends to infinity. There are many options for the basis functions.
One way to treat this class of functions is the domain truncation method that imposes artificial
boundary conditions at a sufficiently large radius [24]. The method can be made more efficient
if additional mappings are used, so that standard spectral basis functions such as Chebyshev
polynomials can be used. Grosch and Orszag [25] investigated the exponential and algebraic
mapping methods in the semi-infinite domain and found by numerical experiments that the algebraic
mapping gives a better result than the exponential mapping. Boyd [26] supported their result by
examining the asymptotic behavior of the expansion coefficients of model functions by the method
of steepest descent. Matsushima and Marcus [27] presented a spectral method for an unbounded
domain using rational basis functions, which are algebraically mapped Legendre functions, and
are used for the expansion in the radial direction of the polar coordinates. The method is not
stiff when it is applied to initial-value problems despite the presence of the coordinate singularity.
Solenoidal vector fields are treated efficiently by the toroidal and poloidal decomposition, which
reduces the number of dependent variables from three to two.

In spite of these investigations cited above, the algebraic mapping has some drawbacks in the
axisymmetric geometry, such as clustered points near the origin. But the use of an exponential
mapping may treat the problem near the origin region easily. For example, an extra function can
be included in the basis functions to represent the far-field behavior of the expanded functions
more efficiently [28, 29]. In the present work, a spectral Petrov–Galerkin scheme for the numerical
approximation of hydrodynamic stability equations in a circular jet is presented. The infinite
domain is transformed into a finite unit disk domain by exponential mappings. In order to weaken
the coordinate singularity at the axis, the discrete formulation of the disk with Chebyshev spectral
method proposed by Fornberg and Sloan [14] is adopted. By restricting attention to solenoidal
vector fields, the pressure variable is eliminated. Following [21–23], complex physical basis and
test basis functions in a bounded domain are used for the expansion in the radial direction of polar
coordinates. These functions satisfy the pole condition exactly at the coordinate singularity; they
can be used in analytical studies and are particularly useful in numerical solutions. The numerical
method is validated against the results available in the literature. The mathematical formulation
and the exponential coordinate transformation are reported in Sections 2 and 3, respectively; the
numerical solenoidal Petrov–Galerkin discretization method is derived in Section 4. Results and
comparison with fifth-order variable step, Runge–Kutta method [5], compact FD method [30] and
domain truncation method [24] in the literature are discussed in Section 5. Concluding remarks
can be found in Section 6.

2. THE MATHEMATICAL FORMULATION

To derive the linearized equations for a round jet, we start with the incompressible dimensionless
Navier–Stokes equations. These equations in cylindrical polar coordinates become
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These equations are non-dimensionalized with respect to a length scale L∗, a velocity scale U∗
and the Reynolds number Re= L∗U∗/v. The length scale and velocity scale are usually based on
the jet core velocity and momentum thickness. Our concern in this paper is the linearized problem
in which only infinitesimal perturbations from the laminar flow are considered, Let

ur =Ur +u′
r , u� =U�+u′

�, uz =Uz+u′
z, p= P+ p′ (6)

and the perturbation can be expressed as superposition of complex Fourier modes of the form
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where ur (r), u�(r), uz(r) and p(r) are the amplitudes of the corresponding disturbances, n is the
azimuthal mode of the disturbance, k is the axial wavenumber of the disturbance, c (or �=kc) is
the wave amplification factor. Then the linearized Navier–Stokes equations become
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where D=d/dr . The linear stability equations (8)–(11) are of singular Sturm–Liouville equation
and have regular singularities at r =0.

In order to solve the linear system we must define the boundary conditions. According to Morris
[31], the boundary conditions at the centerline of the jet are set for different azimuthal modes. In
addition, in the far field, the boundary conditions are such that �→0 when r →∞. In particular, for
each mode we must implement the following boundary conditions once the system has been defined
and before the eigenvalue problem is solved. The following boundary conditions of disturbance
were first derived by Batchelor and Gill [6], and then adopted by many researchers [32]. The
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boundary conditions take the form:
Case n �=1:

ur (0)=u�(0)=Duz(0)=Dp(0)=0, ur (∞)=u�(∞)=uz(∞)= p(∞)=0 (12a)

Case n=1 :
ur (0)+u�(0)=Duz(0)=Dp(0)=0, ur (∞)=u�(∞)=uz(∞)= p(∞)=0 (12b)

The mode of n=0 is not considered in the present study in that the linear stability problem of a
round jet reduces to the ordinary Orr–Sommerfeld equation. The first azimuthal mode disturbance
(n=1) is usually more unstable than the other azimuthal mode disturbance, and is the main object
of the present study.

3. COORDINATE TRANSFORM

We investigate the utility of mappings to numerically solve the linear stability problem of a round jet
in infinite regions. The numerical solution of continuum problems in unbounded regions involves
two essential approximations: first, the continuum must be approximated by a discrete set and
second, the unbounded domain must be approximated by a finite domain. The first problem is
the one usually studied in numerical analysis. In order to have spectral accuracy in the numerical
approximation, Chebyshev series is adopted in the present paper. The second problem in the present
study is treated by a coordinate transformation of the infinite domain into a finite domain.

Spectral computations are frequently carried out in the bounded domains. The most common
way to discretize the polar coordinates spectrally is to take a periodic Fourier grid in the azimuthal
direction and a non-periodic Chebyshev grid in the radial component. Specifically, the grid in the
radial direction is transformed from the usual Chebyshev grid for x ∈[−1,1] by x ′ =(x+1)/2.
The result is a polar grid that is highly clustered near both the boundary and the origin. Grids
like this are convenient and commonly used, but they have some drawbacks. One difficulty is that
while it is sometimes advantageous to have points clustered near the boundary, it may be wasteful
and is certainly inelegant to devote extra grid points to the very small region near the origin, if
the solution is smooth. Another is that for time-dependent problems, these small cells near the
origin may force one to use excessively small time steps for numerical stability. Accordingly,
various authors have found alternative ways to treat the region near the origin. In this paper we
use the formulation proposed by Fornberg and Sloan [14, 15]. Closely related methods for polar
coordinates have been used by others over the years; for a table summarizing twenty contributions
in this area, see [26]. The idea is to take x ∈[−1,1] instead of x ∈[0,1]. To expand this class of
functions, we consider the exponential mapping

x= 1−e−r/L

1+e−r/L
, r ∈(−∞,∞) or r/L= ln

1+x

1−x
, x ∈(−1,1) (13)

where L>0 is the map parameter. The interval −∞<r<∞ is mapped to −1<x<1 on which the
Chebyshev functions are orthogonal. In Figure 1 we plot x versus r for the exponential map with
various values of L . The points indicate that the equivalent mesh in r is non-uniform with the most
rapid variation occurring with r 	L . The exponential map gives a good resolution near axis and
it is especially useful in the treatment of the geometrical singularity for cylindrical coordinates.
The map gives a better solution as r →∞ for larger parameter value of L .
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Figure 1. Variation of r versus x for the exponential map with various values of L .

Then the distribution of velocity in the round jet is [2]:
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The exponential map is especially convenient because it yields simple expressions for derivatives.
The derivatives with respect to r become:
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The profile of the axial component of velocity of the round jet and its derivative for various values
of L is shown in Figure 2. The larger the L , the sharper the profiles curve near the origin and a
highly clustered grid is needed if the solution is smooth there. It may be wasteful and inelegant in
the computation. Thus a smaller L is needed to save the cost of computation. Comparing Figures 2
and 3 with Figure 1, there is a contradiction in the choice of the map parameter L , and the problem
is discussed and solved in Section 5.2.

We use Chebyshev series to represent the scalar function u(r), then

u(x)=
N∑
j=0

a j T2 j (x) (16)

Here T2 j (x) is the Chebyshev polynomial of degree j defined by

T2 j (cos�)=cos2j� (17)

the set of T2 j (x) for fixed integer j is complete and orthogonal with respect to weight function

w=1/
√
1−x2 (18)
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Figure 2. Distribution of axial component velocity and its derivation of round jet with various L .

The details of the application of Chebyshev series to the numerical solution of ordinary and partial
differential equations are given in [33]. Then the linearized Navier–Stokes equations become
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where D∗ =(1−x2)(�u/�x)/2L ,r = L ln(1+x)/(1−x). The boundary conditions of n=1 mode
become:

ur (0)+u�(0)=Duz(0)=Dp(0)=0, ur (1)=u�(1)=uz(1)= p(1)=0 (23)

4. SOLENOIDAL PETROV–GALERKIN DISCRETISATION

In order to have spectral accuracy in the numerical approximation of the eigenvalues problem,
analyticity of the vector fields is required in the interval [0,1]. Transformations to polar coordi-
nates are singular at r =0, making necessary a special treatment of our solution functions in a
neighborhood of the origin. At this point, we must think of a complex variable problem instead of
a real one. The domain of our problem is |x |�1. The analyticity of the vector fields in the polar
axis is ensured provided that the components satisfy the following property.

Theorem (Priymak and Miyazaki [21])
Consider a vector field u(r,�)=ein�[ur (r)er +u�(r)e�+uz(r)ez] for r�ε for some ε>0. The
radial, azimuthal and axial components of u must satisfy the following conditions: ur (r)=r fE (r),
u�(r)=rgE (r) for n=0 and ur (r)=rn−1 fE (r), u�(r)=rn−1gE (r) for n �=0 for the radial and
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azimuthal components, and uz(r)=rnhE (r) for the axial component, where fE (r), gE (r) and
hE (r) are functions that are analytic and even.

According to the regularity analysis of Priymak and Miyazaki [21] and Meseguer and Trefethen
[23], the solenoidal solutions satisfy the conditions of the theorem. In addition, a straightforward
Frobenius method provides the right parity conditions required by this theorem. In fact, Equations
(19)–(21) are Bessel-type differential equations. Therefore, for n even, n2 is also even, but n2+1 is
odd, uz being an even function. By the same rule, ur and u� are odd functions. The same reasoning
can be applied for n odd. Our main goal is to approximate the solutions of the eigenvalues problem
(19)–(22) by a spectral expansion. After substitution of the spectral expansion in the eigenvalues
problem, the linearized operator is projected over another subspace of divergence-free fields (the
dual or test space). Therefore, two different sets of vector fields are needed, one for the physical or
trial space (noted as um), and the other for the dual or test space (noted as wm), both solenoidal.
There are many different ways of obtaining divergence-free fields in polar coordinates; we proceed
in the way similar to that of Meseguer and Trefethen [23]. The solenoidal condition (22) introduces
a linear dependence between the components, ur (r), u�(r), uz(r); therefore, there are only two
degrees of freedom. The solenoidal basis for the approximation of the perturbation vector field
takes the form

u=ei(kz+n�−kct)
M∑

m=0
a(1)
m w(1)

m (x) ·u(1)
m (x)+a(2)

m w(2)
m (x) ·u(2)

m (x) (24)

which satisfy the analyticity and parity conditions. The vector fields u(1)
m and u(2)

m satisfy the zero
divergence condition:

∇ ·ei(kz+n�−kct)u(1,2)
m =0 (25)

In order to identify radial, azimuthal and axial component, the matrix notation is used:
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m =urer +u�e�+uzez =

⎛
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⎞
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r

)
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1

r
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)
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There is a linear dependence between the components of the vector field. In this case, rendering
the azimuthal or radial one free, any element of this subspace with order m can be expressed in
the form

um(x)=ei(kz+n�−kct)[a(1)
m u(1)

m (x)+a(2)
m u(2)

m (x)] (28)

in which the vector fields u(1)
m and u(2)

m take the form

u(1)
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⎛
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−inur (x)

rD+[ur (x)]
0

⎞
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0
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where D+ =D∗+1/r . Mathematically speaking, the factor of i in u(2)
m could be dispensed with;

it is left in so that the basis functions have a desirable symmetry property. Then the aim is now
to find suitable functions ur and u� such that the conditions of theorem as well as homogenous
boundary conditions are satisfied. For the azimuthal component we consider

u�(x)=rn−1hm(x), hm(x)=(1−x2)T2m(x) (30)

In the definition of the function hm(r), T2m(r) stands for the Chebyshev polynomial of order 2m.
The factor (1−x2) is added to make the vector field vanish over the wall. The factor x is necessary
so that the analyticity conditions of the theorem are satisfied at the origin. We proceed in the same
way for the radial component.

ur (x)=rngm(x), gm(x)=(1−x2)hm(x) (31)

In this case the binomial (1−x2) is squared because the axial component also must vanish at
x=1. Then the physical or trial basis is:

u(1)
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⎛
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D∗[rngm(x)]
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⎞
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We consider here the projection procedure in which the radial integration is involved. The radial
Hermitian product is defined by the volume integral

(wm,um)=
∫ 1

0
(w∗

m ·um)xdx= 1

2

∫ 1

−1
(w∗

m ·um)xdx (32)

where um belongs to the physical or trial space and wm is a solenoidal vector field that belongs to
the test or projection space. In order to take advantage of the orthogonality properties of Chebyshev
polynomials, the test functions should be built up suitably. In essence, the projection fields are
going to have the same structure as the trial fields, but the functions will be modified by the
Chebyshev weight (1−x2)−1/2. However, the resulting matrices would be dense. They can be
made to be bounded if the projection velocity fields are as follows:

w(1)
m = 1√
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for n odd, except that if k=0, the third component of w(2)
m is replaced by rhm(x), or
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m = 1√
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⎛
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−ingm(x)
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for n even, except that if k=0, the third component of w(2)
m is replaced by hm(x).

The right-hand side integral in Equation (33) can be computed exactly by Gauss–Chebyshev–
Lobatto quadrature formulas. In fact, the even form of the integrand will be used in order to avoid
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unnecessary computations. We will only consider half a Gauss–Lobatto mesh. From this point of
view, analyticity imposes some restrictions that can be used to optimize the computational cost.

The Petrov–Galerkin projection scheme is carried out by substituting the spectral approximation
in equations and projecting over the dual space. This procedure leads to a discretized generalized
eigenvalues problem, and the coefficient a(1,2)

m governs the temporal behavior of the perturbation.[
(w(1)

m ·�[u(1)
m ]) (w(1)

m ·�[u(2)
m ])

(w(2)
m ·�[u(1)

m ]) (w(2)
m ·�[u(2)

m ])

][
a(1)
m

a(2)
m

]
=c

[
(w(1)

m ·u(1)
m ) (w(1)

m ·u(2)
m )

(w(2)
m ·u(1)

m ) (w(2)
m ·u(2)

m )

][
a(1)
m

a(2)
m

]
(34)

where � stands for the linear operator of linear stability equations

�[·]= 1

Re
�[·]−uB ·∇[·]−[·]·∇uB (35)

where uB are the basic flow velocity vector (0,0,Uz). The pressure term should be formally
included in the operator �, but it is cancelled when projecting it over w, that is (w,∇p)=0, and
where the Hermitian product is the volume integral

(w,∇ p)=
∫ 1

0
x dx

∫ 2�

0
d�

∫ 2�/k

0
(w∗ ·∇ p)dz (36)

Symbolically, Equation (39) can be written as

ARe(n,k)u=cB(n,k)u (37)

where ARe is a matrix that depends on the Reynolds number. In addition, the matrices ARe and B
depend on n and k, being decoupled for each pair of them. The explicit matrix elements of ARe
are provided by the Hermitian products

ARe(n,k)i j =
⎡
⎣(w(1)

i ·�[u(1)
j ]) (w(1)

i ·�[u(2)
j ])

(w(2)
i ·�[u(1)

j ]) (w(2)
i ·�[u(2)

j ])

⎤
⎦ (0�i, j�M) (38a)

B(n,k)i j =
⎡
⎣(w(1)

i ·u(1)
j ) (w(1)

i ·u(2)
j )

(w(2)
i ·u(1)

j ) (w(2)
i ·u(2)

j )

⎤
⎦ (0�i, j�M) (38b)

Let M be the approximation orders of Chebyshev polynomial in the axial, azimuthal and radial
coordinates, respectively. The matrix dimension of the linear system ARe and B is 2(M+1). The
following orthogonality relations are useful in order to take advantages of the azimuthal and axial
symmetries: ∫ 2�

0
ei(n

′−n) d�=2��n
′

n

∫ 2�/k

0
ei(k

′−k)z dz= 2�

k
�k

′
k (39)

where �ij is the Kronecker symbol. In the present study, the temporal instability of the round
jet is considered. Hence, k and n are real quantities while c=cr + ici is generally complex. The
disturbances will grow with time if ci>0 and will decay ci<0 in Equation (7). The neutral
disturbances are then characterized by ci =0.
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5. RESULTS AND DISCUSSION

In stability analysis the most important eigenvalue is the one that is the most unstable or least
stable. For the present framework, this corresponds to the eigenvalue with the least imaginary part.
In particular, the flow will be temporal unstable if the imaginary part of the complex amplification
is positive. The results in the present section have been obtained by parametrically varying the
Reynolds number and frequency for an azimuthal wave number n of 1.

5.1. The order of Chebyshev polynomial effect

The wave amplifications (ci ) of round jet for M ranging from 40 to 100 are shown in Figure 3.
It shows that the wave amplification of a round jet at M=80 has almost the same trend as that
of M=100. It can be concluded that M=100 is far away enough for the accuracy of wave
amplifications. Hence, the order of Chebyshev polynomial is defined at M=100 in the present
study.

5.2. The map parameter L effect

From the analysis in Section 3, there is a contradiction in the criterion for the choice of the map
parameter L . In order to get a better solution as r →∞, the larger L is needed. While for the
sake of the computational cost, the smaller L is demanded. The effect of the map parameter L
on the amplification as functions of k and Re is plotted in Figures 4 and 5. It shows that the
largest amplification for various k and Re takes place under the condition that L is about 3. We
adopted the map parameter values with L=3 for the main calculation; this value represents the
best compromise between the competing demands of the accuracy and the cost of the computation.
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Figure 4. The effect of map parameter L on amplification factor with various k for fixed Re=37.7.
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Figure 5. The effect of map parameter L amplification factor with various Re for fixed k=0.45.
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Figure 6. Amplification factor as a function of Re and k.

5.3. The critical Reynolds number

To obtain the critical Reynolds number, the amplification factor for some values of Re close to the
critical Reynolds number is plotted in Figure 6. The critical Reynolds number is the point where
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Figure 7. The neutral curve in k−Re plane of round jet for n=1 mode.

Table I. Comparison of critical Reynolds number for n=1 mode.

Reference Re k cr

Morris [31] 37.64 0.44 0.1
Lessen and Singh [32] 37.9 0.3989 0.08
Salgado and Sandham [30] 37.8 0.417 0.09
Kulkarni and Agarwal [5] 37.68 0.4505 0.104
Xie et al. [24] 37.89 0.45 0.103
Present 37.6828 0.459 0.103

the curve ci (k) becomes tangent to the ci =0 line. And in k−Re plane the neutral curve (ci =0
line) separates the space into two zones: one is stable and the other is unstable, which is shown in
Figure 7.

From the graph the critical Reynolds number is found to be 37.6823 and the corre-
sponding wavenumber is 0.459 for n=1 mode; under these conditions, the amplification is
ci =−1.199819562286690e−006. The present result is also compared with some of the other
values reported by researchers in Table I.

6. CONCLUSION

The incompressible linear stability equations for a round jet in cylindrical polar coordinates with
Petrov–Galerkin spectral method have been presented. To construct a basis function set for the
unbounded domains, it is necessary to assume the asymptotic behavior of the approximated func-
tions for large r . We conclude from the examples given above that mappings are an effective
way to solve problems in infinite domains provided that the solution is simple at infinity. When
mappings are applicable, the proper choice of mapping should be based on the criterion that the
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solution to the problem is be smooth in the mapped coordinate and incorporate the treatment of
the singularity. For linear stability of a round jet, the exponential mappings is favorable.

Problems posed in (r,�) polar coordinates can be solved efficiently by spectral methods by
using a Chebyshev discretization for r and a Fourier discretization for �. To weaken the coordinate
singularity at r =0, one approach is to take x ∈[−1,1] instead of x ∈[0,1]. The numerical simula-
tion was performed by a Matlab code similar to that of Meseguer and Trefethen [23]. The critical
Reynolds number is also computed and shown to be in good agreement with those reported in the
literature. The method is validated against the results with a fifth-order Runge–Kutta method [5],
compact FD method [30] and domain truncation method [24].
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